top of page
Search

mithrilAI Recognized with NSF’s SBIR Phase I Award


mithrilAI Corp. is honored to be recognized with the National Science Foundation (NSF) Small Business Innovation Research (SBIR) Phase I Award, underscoring our commitment to advancing semiconductor technology for critical applications. This award will support our ongoing efforts to innovate and develop cutting-edge solutions in artificial intelligence and machine learning hardware, contributing to a safer and more efficient future.


The broader impact of this SBIR Phase I project is centered on elevating economic and societal well-being by significantly enhancing the security posture of Artificial Intelligence (AI) and Machine Learning (ML) hardware and systems, which are increasingly ubiquitous and used in safety/security-critical applications. As this project analyzes hardware attacks and pioneers new defenses, it ensures a more reliable foundation for AI/ML technologies that society relies upon for healthcare, finance, and national security. The commercial potential is substantial; as developers deploy these fortified systems, they mitigate the risk of costly breaches, fostering trust and accelerating adoption. Economic benefits also extend to a reduction in expenditure related to cyberattacks and an increase in market competitiveness for secure AI/ML products. Furthermore, by deepening understanding of hardware vulnerabilities and defense mechanisms, the project pushes the frontiers of scientific knowledge in cybersecurity. As a result, the innovations from this project are poised to reinforce critical infrastructure against hardware-centric threats, thereby safeguarding the digital economy and reinforcing the United States' leadership in secure technological advancements.


This NSF SBIR Phase I project conducts a transformative approach to addressing the acute problem of securing AI/ML hardware systems against emerging hardware attacks such as side-channel and fault injection attacks. Recognizing the vulnerability of these systems to hardware exploitation, the project aims to comprehensively analyze the attack vectors and devise innovative defense mechanisms. The proposed research is set to employ a multi-layered methodology that integrates cutting-edge cryptographic techniques and novel machine-learning algorithms to enhance hardware security. Through rigorous experimentation and validation, the anticipated technical results include the development of trusted hardware modules, the establishment of a benchmarking framework for hardware threat assessment, and the creation of adaptable, resilient defense architectures. This will significantly advance scientific understanding of hardware security in the context of AI/ML, potentially setting a new standard for industry practices, while addressing a critical vulnerability in modern computing infrastructure.



Comments


Commenting has been turned off.
bottom of page